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ABSTRACT: The soluble fraction of aerosol Fe, mainly Fe(II), represents a large
source of nutrient iron to the open ocean. Fe(II) may also play an important role in
the adverse health effects of ambient aerosols. Our current understanding of the
reduction of Fe(III) to Fe(II) in aerosols suggests that the major pathway is the
photoreduction of Fe(III)−oxalate complexes, but this pathway cannot explain the
observed nighttime Fe(II) in ambient aerosols and is also limited by the supply of
oxalate. Here we propose a new pathway initiated by gaseous HO2 uptake, followed
by Cu−Fe redox coupling, which can sustain nighttime Fe(II) and also dominate
Fe(III) reduction in the absence of Fe(III)−oxalate complexes. Consequently,
aqueous OH production is substantially enhanced via the Fenton reaction and
sustained by the influx of HO2 from the gas phase. This mechanism is potentially
the major mechanism for sustaining soluble Fe(II) in ambient aerosols and can be
tested by a combination of modeling and aerosol Fe speciation measurements. We
hypothesize that this mechanism may also be relevant to mineral Fe dissolution in
dust aerosols.

1. INTRODUCTION
Fe speciation in aerosols is of great interest for ocean
biogeochemistry and public health. Fe is ubiquitous in both
crustal and combustion aerosols,1 with solubility varying greatly
from ∼0.1% in soil dust to ∼80% in oil fly ash.2 The
bioavailable fraction of aerosol Fe, often assumed to consist of
readily soluble Fe(II), represents a dominant source of nutrient
Fe to the open ocean.3,4 Soluble Fe in ambient aerosols may
also have adverse health effects, contributing a large fraction of
the oxidative potential in human lung fluid.5 Worldwide
measurements of aerosol Fe speciation suggest that a significant
fraction of total dissolved Fe [Fe(II) + Fe(III)] is in the form of
Fe(II), with large spatial and temporal variability (Table 1). In
particular, a significant Fe(II) fraction (10−60%) was observed
at night.6−8

Our current understanding of Fe redox cycling in aqueous
aerosols is incomplete. Fe(II) can be oxidized to Fe(III) via
known pathways, including its reactions with aqueous HO2/
O2

−, OH, and H2O2.
9 In particular, with an atmospheric

abundance of gaseous H2O2 (∼1 ppb and Henry’s law constant
of 7.4 × 104 M atm−1), the chemical lifetime of Fe(II) is <1 h
because of the Fenton reaction.10

+ → + + −Fe(II) H O Fe(III) OH OH2 2 (1)

To sustain Fe(II) in aerosols, Fe(III) must be continuously
reduced to Fe(II). This reduction is thought to be largely from
the photolysis of Fe(III) organic complexes,11−13 as the Fe(III)
+ HO2/O2

− reaction is too slow to be important. However, this
photoreduction of Fe(III) cannot be responsible for the

substantial fraction of nighttime Fe(II) (10−60%) observed
in ambient aerosols,6,8,14 as photons are unavailable while Fe
(II) oxidation continues during the night. It also requires a large
source of organic compounds to sustain the fast photolysis of
Fe(III) organic complexes during the day.15−17 Thus, there is a
need for an additional reductant for Fe(III) to sustain nighttime
Fe(II) and to some extent daytime Fe(II). Here we propose a
new catalytic mechanism (Figure 1) that is initiated by gaseous
HO2 uptake, followed by Cu−Fe redox coupling. This
mechanism may play a critical role in sustaining Fe(II) in
ambient aerosols, without which soluble Fe may be rapidly
converted to the insoluble form in ambient Fe-bearing aerosols,
leading to a strong suppression of bioavailable Fe to the open
ocean. Such a mechanism may also have important implications
for quantifying adverse health effects of ambient aerosols due to
the soluble form of transition metals.5,18

2. MATERIALS AND METHODS

2.1. Schematic. Similar to Fe, Cu is another ubiquitous
component in combustion and dust aerosols.19 Cu tends to
fully dissolve at pH <5, while the solubility of Fe varies greatly
from <0.1 to 80%.20 The dissolved Cu/Fe molar ratio is mainly
in the range of 0.01−0.1 (Table S1). The hydroperoxyl radical,
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HO2, is produced from atmospheric oxidation of most
hydrocarbon and carbon monoxide (CO). Its daytime source,
as driven by OH, tends to be stronger than nighttime sources,
as driven by ozone and NO3. Nighttime gaseous HO2, however,
can still be significant in various regions because of enhanced
nighttime production.21,22

It is well established by laboratory measurements that
gaseous HO2 is lost rapidly to Cu-doped aerosols via the
reaction23−25

+ → + + +Cu(II) HO Cu(I) O H2 2 (2)

Within the range of Cu/Fe ratios in ambient aerosols, Cu−
Fe redox coupling is expected to dominate the fate of Cu(I)
and Fe(III):26

+ → +Cu(I) Fe(III) Cu(II) Fe(II) (3)

The electron transfer reaction Cu(I) + Fe(III) is rapid with a
rate constant of 1.3−3 × 107 M−1 s−1,27−30 and this reaction
can dominate the reduction of Fe(III) to Fe(II) across a wide
range of Cu/Fe ratios both in aerosols and in cloud
droplets.26,31,32 The Cu−Fe redox coupling, initiated by
gaseous HO2 uptake, therefore, provides a novel catalytic
pathway for reducing Fe(III) to Fe(II). As we will show below,
this mechanism can potentially sustain the nighttime Fe(II) in
aerosols with an ambient level of gaseous HO2. Invoking uptake
of HO2 and conversion to H2O by the transition metal
chemistry in aerosols has been found to improve modeling of
field measurements of H2O2.

33,34

2.2. Fe Redox Cycling in Aerosols. To assess the diurnal
variation of Fe redox cycling in aerosols, we apply a box model
that accounts for the surface exchange of HO2 and H2O2
between the gas phase and aerosols and computes aerosol
aqueous chemistry involving OH, HO2, H2O2, Cu, and Fe. The
model is described in detail in ref 26. Model calculations
assume an aqueous NH4(SO4)2 aerosol with a dry radius of
0.59 μm at 85% relative humidity (RH) and 298 K. A dissolved
Cu concentration of 5.9 × 10−3 M was adopted from ref 35 for
background aerosols with a total Cu concentration of 3.1 ng
m−3, significantly lower than its concentration in the upper
continental crust (∼10 ng m−3).36 The dissolved Cu/Fe molar
ratio is kept constant at 0.05 (approximately the mean ratio
from the IMPROVE network26). We conduct simulations with
prescribed HO2 concentrations for noon (10 pptv) and
midnight (2 pptv). Measurements of nighttime HO2 range
from 2 to 5 pptv in remote oceans37 to >10 pptv in polluted
regions.22 The H2O2 concentration is assumed to be 1 ppbv in
both simulations. Photolysis reactions are turned off at night. In
the initial model configuration, we neglect oxalate, and its role
will be addressed in the next section.

3. RESULTS AND DISCUSSION

3.1. Budget of Fe(II) in Aqueous Aerosol. Figure 2
shows the budget of dissolved Fe and O2(−I) [≡HO2(aq) +
O2

−] in an aqueous aerosol for both noon and midnight
scenarios. HO2 is a weak acid with a pKa of 4.7. In both
scenarios, O2(−I) mainly reacts with Cu(II), producing Cu(I),
which in turn reduces Fe(III) to Fe(II) via reaction 3. In
contrast, the photolysis of Fe(OH)2+ is fairly slow (∼4 × 10−7

s−1) during daytime and plays a minor role in the reduction of
Fe(III). This is different from aqueous chemistry in cloud
droplets,38,39 as the aqueous-phase solution in aerosols is 103−
106 times more concentrated for dissolved Cu and Fe that leads
to a much stronger Cu−Fe redox coupling.
Another prominent feature is the nighttime fraction of

Fe(II). As shown in Figure 2, the fraction of Fe(II) to total
dissolved Fe decreases from 53% at noon to 17% at midnight,
due to a decrease in the ambient level of gaseous HO2. In fact,
the fraction of nighttime Fe(II) is largely dependent on the
ambient HO2 concentration. With a higher HO2 concentration
of 4 pptv, the nighttime Fe(II) fraction can increase to 30% of
total dissolved Fe. With HO2 uptake turned off in the model,
Fe(II) is completely converted to Fe(III) within several
minutes. However, organic complexation of Fe(II) may slow
its oxidation by the reactive oxygen species and thereby
increase its fraction, which is not included in our model because
of a lack of data. Therefore, both the daytime and nighttime
Fe(II) in our simulations is largely sustained by gaseous HO2
and Cu−Fe redox coupling.

Table 1. Measurements of Fractional Fe(II) (percentage) in
Ambient Aerosols

location or type
Fe(II)/[Fe(II) +

Fe(III)] ref

northwest Pacific Ocean 22a 6
Barbados, West Indies 6−55a 8
Barbados, West Indies 7−28 10
North Pacific 15 39
ACE-Asia/MILAGRO/PELTI/INTEX-B field
campaigns

0−73 68

tropical North Atlantic Ocean 60 69
Arabian Sea 50 70
Arabian Sea 65 71
Atlantic Ocean 38−62 72
western United States 90 73
Atlanta, GA, United States 57a 74
Asian outflow 33 75
subtropical northern Atlantic Ocean 5−32 76
Germany 11 77
southern Ocean and coastal Antarctica 12−100 78
St. Louis urban area 50−100 79
eastern and western United States 13−90 80
aNighttime measurements were conducted and showed a significant
fraction of Fe(II).

Figure 1. Schematic diagram of major Fe(III) reduction pathways in
aqueous aerosols, including (1) photoreduction of Fe(III)−oxalate
complexes and (2) Cu−Fe redox coupling driven by HO2 uptake.
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This mechanism leads to a significant and continuous
production of aqueous OH via the Fe(II) + H2O2 reaction.
We find that the aqueous OH production rate is 8.0 × 10−6 M
s−1 for noon and 2.5 × 10−6 M s−1 for midnight, several orders
of magnitude higher than the rate of direct uptake of gas-phase
OH (∼10−8 M s−1)40 or nitrate and nitrite photolysis in
aerosols (∼10−9 M s−1).41 We find that Cu−Fe redox coupling
dominates the reduction of Fe(III) to Fe(II) over a wide range
of Cu/Fe ratios and pH conditions in aerosols (Figure 3). We

emphasize that this aqueous OH production is driven by the
influx of HO2 from ambient air, in contrast to previous
laboratory measurements of the aqueous OH formation rate.42

The conversion efficacy from gaseous HO2 to aqueous OH
depends upon the fraction of Fe(II) + H2O2 to total Fe(II) loss
rates, which is 34% for noon and 58% for midnight (Figure 2).
As gaseous HO2 is in general far more abundant than OH,43

this mechanism may enhance aqueous oxidation in ambient
aerosols. We emphasize that this model should not be limited

by sulfate aerosol but could also be applied to dust aerosols
given that Cu is one of the major trace elements in crustal
dust.19 In fact, we expect that the dissolved Cu concentration in
dust aerosols may be higher than currently assumed values and
thus play an important role in modulating Fe speciation in dust
aerosols.

3.2. Role of Oxalate in Fe Redox Cycling. We now
proceed to discuss the role of oxalate in modulating Fe
speciation. As the most abundant species among identified
water-soluble organic compounds,44,45 oxalate can readily form
complexes with transition metal ions (TMI),46 while formate
and acetate have a much weaker tendency because of their
lower complexation constants.47 Oxalic acid (H2C2O4) has first
and second acid dissociation constants (pKa) of 1.2 and 4.2,
respectively, with stability constants (log KML) of 6.2, 3.0, and
9.4 (at zero ionic strength) for CuC2O4, Fe(C2O4), and
Fe(C2O4)

+, respectively.30 Its primary sources include biomass
burning and vehicle exhaust. Other sources can often be quite
significant, such as in-cloud processing.45,48

Previous studies have shown significantly enhanced reduction
of Fe(III) in the presence of oxalate.10,49,50 This has been
attributed to the photoreduction of Fe(III)−oxalate complexes
in aerosols:

+

→ + − +

− +

+ −

hv

n

2[Fe(C O ) ]

2Fe (2 1)C O 2CO
n

n
2 4

(3 2 )

2
2 4

2
2 (4)

The photochemical lifetime of Fe(III)−oxalate complexes is
rather short, on the order of minutes.32 As oxalate is converted
to CO2, this photoreduction (reaction 4) leads to a rapid sink
of oxalate.13,16,50,51 The loss of oxalate via reaction 4 is also
supported by recent field observations.17

To account for the role of this photoreduction process, we
include oxalate complexation in the model following the
method of Johnson and Meskhidze.11 We find that Fe(III) is
dominated by Fe(C2O4)

+, Fe(C2O4)2
−, and Fe(C2O4)3

3−, for
assumed C2O4

2−/SO4
2− ratios between 0.01 and 10%, because

of the high stability constant for Fe(III)−oxalate complexes.

Figure 2. Simulated aerosol budgets of O2(−I) [=HO2(aq) + O2
−] and dissolved Fe in the presence of dissolved Cu, for both noon (left) and

midnight (right). Only major reaction pathways are included. The values shown inside each box are aqueous concentrations (molar), with
percentage numbers in the bottom panels representing the fractions of Fe(II) and Fe(III) to total dissolved Fe. The values shown above each arrow
are transformation rates (molar per second). Read 6.4(−5) as 6.3 × 10−5. Model calculations assume an aqueous (NH4)2SO4 aerosol with a dry
radius of 0.59 μm at 85% RH and 298 K. A dissolved Cu concentration of 5.9 × 10−3 M was adopted from ref 28. The dissolved Cu/Fe molar ratio is
kept constant at 0.05. The aerosol pH is 1.1 with an ionic strength of 12.2 mol kg−1. The gaseous HO2 concentration is held constant at 10 pptv for
noon and 2 pptv for midnight. The H2O2 concentration is assumed to be 1 ppbv in both simulations.

Figure 3. Simulated steady state relationship between Fe(II)/Fetot and
Cu/Fetot under different pH conditions for noon. The gaseous HO2
concentration is kept at 10 pptv and the H2O2 concentration at 1
ppbv.
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The dominance of Fe(III)−oxalate complexes under these
conditions is consistent with laboratory experiments.50 In the
presence of sunlight, photoreduction of Fe(III)−oxalate
complexes dominates the reduction of Fe(III) to Fe(II), but
this dominance decays within minutes because of the rapid
depletion of oxalate, as shown by laboratory experiments.10,51,52

To sustain this photoreduction, a large source of oxalate is thus
required in the aqueous phase, on the order of 1 mM s−1. This
is several orders of magnitude higher than what the current
understanding of oxalate production in aqueous aerosols can
account for (<10−3 mM s−1).53 Another possibility is that
aerosol oxalate is not available for complexation with Fe(III), as
suggested by recent measurements that the major fraction (60−
80%) of aerosol oxalate is chelated with Ca, Zn, and Mg,
instead of Fe.54 We therefore conclude that the role of
photoreduction of Fe(III)−oxalate complexes is likely limited
by the supply of oxalate in aerosols.
3.3. Recommendations for Future Field Measure-

ments. This new pathway for modulating Fe(II) in ambient
aerosols, Cu−Fe redox coupling initiated by HO2 uptake, may
be readily examined by simultaneous measurements of
dissolved Cu and Fe in ambient aerosols. Assuming a steady
state for both dissolved Cu and Fe, we have k2[Cu(II)][HO2]
≈ k3[Cu(I)][Fe(III)] ≈ (k5[HO2] + k6[H2O2] + k7[HO2])-
[Fe(II)], where k2 and k3 represent the reaction rate constants
for reactions 2 and 3 and k5−k7 represent the reaction rate
constants of Fe(II) with HO2, H2O2, and OH, respectively.
Assuming the total dissolved Cu, [Cu]tot ≈ [Cu(II)], we have
the following relationship:

=
+ +

×
k

k k k
[Fe(II)]
[Fe]

[HO ]
[HO ] [H O ] [OH]

[Cu]
[Fe]tot

2 2

5 2 6 2 2 7

tot

tot

where all concentrations refer to steady state concentrations.
[Fe]tot represents the total dissolved Fe in aerosols. Figure 3
shows the simulated steady state relationship between Fe(II)/
Fetot and Cutot/Fetot under different pH conditions. The linear
dependence between Fe(II)/Fetot and Cutot/Fetot is valid when
Cutot/Fetot is <0.1. At relatively low Fe concentrations (Cutot/
Fetot = 0.1−1), the Cu(I) concentration is sufficiently high to
rapidly convert Fe(III) to Fe(II), resulting in a Fe(II)/Fetot
ratio of ∼1 and a reaction insenstive to Cutot. The pH
dependence in Figure 3 is due to the reaction rate constant of
the Cu(II) + O2

− reaction being higher than that of the Cu(II)
+ HO2(aq) reaction by 2 orders of magnitude and because HO2
is a weak acid with a pKa of 4.7 to dissociate to O2

−. A similar
relationship was also found for nighttime simulations, but
Cu(I) production is decreased because of the low concen-
trations of gaseous HO2. It should be noted that this
relationship may vary with ambient levels of HO2 and H2O2,
and organic complexation for both Cu and Fe in aerosols that
may largely impact their reactivity toward aqueous OH, HO2,
and H2O2. Field measurements must take these factors into
account in an examination of this mechanism.
3.4. Relevance to Mineral Fe Dissolution. We propose a

new mechanism for reducing Fe(III) to Fe(II) in ambient
aerosols. This pathway, initiated by heterogeneous HO2 aerosol
uptake and followed by Cu−Fe redox coupling, can sustain
nighttime Fe(II) that cannot be explained by the photo-
reduction of Fe(III)−oxalate complexes. We show that the
photoreduction of Fe(III)−oxalate complexes is likely limited
by the supply of oxalate, as this reduction consumes oxalate
quickly via production of CO2. In the absence of Fe(III)−

oxalate complexation, this new reduction pathway for Fe(III)
reduction during both day and night is found to sustain Fe(II)
in ambient aerosols. This mechanism provides a significant
source of aqueous OH that is 2 orders of magnitude stronger
than direct aerosol uptake of gaseous OH and facilitates
aqueous oxidation in ambient aerosols.55 An important
uncertainty in this mechanism is caused by the organic
complexation in aerosols,56 which may reduce the reactivity
of Cu(II) and Fe(III) toward OH, HO2, and H2O2 by several
orders of magnitude.1,57 This pathway can be tested by a
combination of modeling and aerosol Fe speciation measure-
ments. In fact, any other TMI that reacts with aqueous HO2
may act as Cu in a similar manner and deserves further
investigation.58

This mechanism may also be relevant to Fe dissolution in
dust aerosols. As driven by atmospheric HO2, the electron
donor, Cu(I), is catalytically produced via the Cu(II) + HO2
reaction. When a Cu(I) ion impinges on an iron oxide and
donates the electron, a surficial Fe(II) locked inside an oxide
lattice is formed, which leads to the release of aqueous Fe(II)
and therefore a net production of bioavailable iron. While
proton-promoted dissolution is relatively slow, electron donors
can accelerate the dissolution process,59 as shown in Figure 4.

This is also consistent with field observations that suggest
Fe(II) in dust aerosols is at least partly produced from
reductive processes with durations on the order of 1−3
days.60,61 In addition, this process is relatively insensitive to
aerosol acidity, allowing Fe dissolution to take place at relatively
high pH.62,63 As gaseous HO2 and dissolved Cu are readily
available, Cu−Fe redox coupling would complement the Fe
dissolution in acid coating of dust aerosols that is thought to be
due to atmospheric processing.39,61,64−67 The self-catalysis of
Fe dissolution could increase the supply of Fe from various
sources to the marine ecosystem. Future studies should aim to
examine the dissolution kinetics of Fe in the presence of
dissolved Cu and gaseous HO2.
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Figure 4. Different pathways of Fe dissolution, including direct
dissolution, proton-promoted dissolution, and reductive dissolution.
Reductive dissolution is the fastest compared to the other two, where
Cu(I) may be the electron donor.
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